

SCAI SuperComputing Application & Innovation CINECA

Sanzio Bassini (CTO) – September 2019

CINECA HPC Road Map

EuroHPC,

www.cineca.it

??.....

The persistence need for more powerful computational resources

HPC & Data Processing are a knowledge accelerator: the more the better!

The progress of modern scientific research itself leads to an ever-increasing need for computational capacity as an inevitable consequence.

LEONARDO "Incomplete" list Scientific cases

	Material Science	Life Science & Bio	Meteo and Climate	Earth Science	Astrophysics & Planetary	Fundamental Physics	Engineering	Energy	Social Sci, Fintech
Batch Simulation (numerical integration)	Quantum Chemistry, atomistic simulations	Molecular Modelling, Brain simulation	Climate and Weather	Volcano, earthquake, sea dynamic, rivers, etc	Cosmo, galaxy, stars, etc formation and dynamic	LQCD	CFD, DNS, LB, FE	Fusion (ITER)	Training DNN
Data Driven (data analysis)	Synchrotron and Neutron sources	NGS, HBP	Radar	Seismic	SKA, GWaves, Satellites	LHC	IoT, sensors	RTM (Oil&Gas)	Fraud detection, Sentiment. Al for complexity
Data Assimilation (simulation + data)		Personalized medicine	Weather	Shallow water sim. Oceanography	Space missions (e.g. GAIA)	Solar wind forecast	Autonomous Vehicles	FWFI (Oil&Gas)	Risk Management, personalized finance (pensions)
Parameter Space (ensemble simulation)	New engineered Materials, designed from scratch	In silico Drug Design	uncertainty quantification	Natural hazard assessment	Star Life Cycle, Black Hole, Neutron Star		Aerodynamics, wings, propellers, turbines	Batteries	
Simulation steering (interactive and visualization)	Apply forcing. Tribology Friction	Molecular Mechanic Simulation					Digital Twins	Reservoir Simulation	
Coupled or chained simulation (workflows)	Property Calculators, Multi- scale simulations		Include soil and ocean effects		Cosmology & Galaxies		Multi-physics simulations	wind turbines	

Leonardo will enable

635 mitral cells 100K granule cells 7·10⁵ synapses (1/20 of the real system area 32,000,000 nonlinear ODEs)

	Seg (min-max)	States (min-max) (v, chan	Syn (min-max) 707218 (000-2796)	
MC (p = 835)	380,748 (189-1433)	5,259,735 (253		
GC (n = 68013)	4,344,724 (33-257)	28,092,017 (2	707216 (1-62)	
Total	4,725,472	32,152,052		
	Computation time	Comm. time (spike exchange)	Comm. time (multisplit)	Total run time (2048 proce
Average (sec)	27149.35	68.53	555.94	32,552.86
Max (sec)	27756.25	813.44	1453.95	

Currently installed on CINECA Marconi JSC JURECA, JUQUEEN

Typical 40 sec of sim. on 2048 processors, fully integrated NEURON+python implementation, 750-106 spikes: 9 hours, 10 Gb output, 99% eff.

Genome-wide molecular docking

Approaching disease-specific poly-pharmacology by connecting drugs with biological targets and diseases

Genome-wide molecular docking simulations will predict

- Drug Efficacy
- Drug Safety
- Averse Effects
- Novel Use of Known Drugs
- In the Zika case study, the <u>ANTAREX</u> (AutoTuning and Adaptivity appRoach for Energy efficient eXascale HPC systems) team identified 26 binding sites from the crystal structures of five Zika proteins: NS5, NS1, NS2B/NS3, NS3 and the envelope protein.
- A total of 1.2 billion molecules were tested via computer simulation on 1 million computational threads available through the Marconi supercomputer.